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pseudo-Riemannian metric

] Mufioz Masquéf and A Valdés Morales}

} CSIC-IEC, C/Serrano 144, 28006-Madrid, Spain
} UNED, Departamento de Matematicas Fondamentales, C/Senda del Rey s/n, 28040-Madrid,
Spain

Received 11 July 1994

Abstract. The number of functionally independent scalar invariants of arbitrary order of a
generic pseudo-Riemannian metric on an s~dimensional manifold is deternined.

1. Intreduction

The goal of this work is to determine the number i, , of functionally independent differential
invariants of order r of a generic pseudo-Riemannian metric g on an n-dimensional manifold
N. The results are: forevery n 2 1, i,0 =in1 =0, forevery r 20,45, =0 iz = 1;
and for every r 2 3, I, = %(r + 1){r — 2); and finally,

z‘1'1,r =n-+

foreveryn 2 3,r 2 2.

(r—1m?=(r+1n (n -z—r)
20r+ 1) r

The theory of metric invariants is classic in both general relativity (GR) and Riemannian
geometry. The standard approach to this topic relies on the definition of an invariant as
a polynomial in the g,;’s, their partial derivatives up to a certain order, say 8"’|gzj/8x°’,
|} < r and on [dct(g,-j)]“, which is ‘natural’ under diffeomorphisms (for example, see
[1]). For scalar invariants, the above definition does not allow one o pose the gquestion
of how many functionally independent invariants there are for each order since some of
the functional relationships among invariants may be outside the ring prescribed by the
above definition and furthermore, standard analysis tools {(such as involutiveness, Frobenius
theorem, etc) cannot be applied since the ring is not complete. From this point of view,
the enumeration of the scalars constructed from the Riemann tensor of the Levi-Civita
connection of 2 pseudo-Riemannian metric by means of covariant differentiation, tensor
products and contractions has been discussed in some recent papers: in {2], the number of
independent homogeneous scalar monomials of each order and degree up to order 12 in
the derivatives of the metric is determined and in [3), the same number is determined up
to order 14. Apart from the interest and complexity of these results, especiatly in relation
to the so-called Weyl invariants (cf {4]) for field theory, it is clear that the determination
of the number i,, is the most relevant fact since it provides the number of essentially
different Diff{N)-invariant Lagrangians of arbitrary order that exist in GR. It, thus, seems
natural to base the theory on the jet-bundle notion of an invariant (¢f {51} which avoids the
aforementioned difficulties of the polynomial notion and translates the naturality condition
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7844 J Mufioz Masqué and A Valdés Morales

into an authentic condition of invariance under the action of the group of diffeomorphisms
of N on an appropriate jet bundle.

The plan of this paper is as follows. In section 2, we introduce the notion of a metric
invariant as well as that of an invariant Lagrangian density, although, for an oriented ground
manifold N, the latter is reduced to the former since the bundle of metrics over N is
endowed with a canonical invariant zero-order Lagrangian density, so that the emphasis is
put on scalar invariants. The nction of invariance is related to a specific representation of
the vector fields of NV into vector fields of the r-jet bundle of metrics. Section 3 contains the
explicit determination of this representation and its formulae are used throughout the paper.
In section 4, we prove that, on a dense open subset of the r-jet bundle, the metric invariants
coincide with the ring of first integrals of an involutive distribution which is obtained by
linearizing the basic representation by means of a homomorphism of vector bundles &',
The number of invariants I, ,, is, thus, equivalent to knowing the rank of ®°. Sections 3,
6 and 7 are devoted to this aim of distinguishing the different cases that appear according
to the values of order r of the jet bundle that we are considering and the dimension n of
the ground manifold. Finally, section 8 contains the calculation of i, and the comparison
of i,» with the standard procedure (cf [6]) in order to generate the second-order metric
invariants.

2. The notion of a metric invariant

Let N be an n-dimensional differentiable manifold. Given an integer 0 € r* < n, we
shall denote by p | M = M+(N) = N the bundie of pseudo-Riemannian metrics on N
of signature (n*,n7), #~ = n —nt (i.e. the global sections of p are exactly the pseudo-
Riemannian metrics on N of signature (n*,n~) at each point). Let p, : J'(M) - N
be the r-jet bundle of local sections of p. The r-jet at a point x € N of a mefric g
of M will be denoted by jI(g). For every r = s, we also have a natural projection
Prs 2 JT (M) = I°(M), ps(jlg) = jig. Let (U;x,...,x;) be an open coordinate
domain of N and let & = (),...,o,) be a multi-index of non-negative integers. We
set |e] = >, ;. The family of functions (x; o p,,yé"), J < k,|ef € r, defined by
ya'(jrg) = (9"g;/0x*)(x), where g, = g(8/8x;, 8/3x,), constitutes a coordinate chart
on p~'U = J7(p~1U). We shall simply write y; instead of y*. Note that the functions
xiop,yu) 1 i< n, 1< j<k < n are a coordinate system on p~I(U7). We shall also
set yi* = y¥ for j > k.

Let f:N — N’ be a diffcomorphism. We shall denote by 7: M — M/, M' =
M+ (N the natoral lift of f to the bundies of pseudo-Riemannian metrics; i.e. 7(g:) =
(f~ygx. Hence, p'o F = fop.

The diffeomorphism F:AM — A’ has a natural extension to jet bundles
Iy d (M) = J (M), defined as follows: J7'(f) (j;g) = j}m(?og o fN.

Given a vector field X € Z(N), we shall denote by X' the natural lift of X to JT(M).

For r = 0, we shall simply write X instead of X°. Note that X is the natural lift to the
bundle A4 of pseudo-Riemannian metrics of the vector field X. If ¢, is the local flow of X,

then J' (p;) is the local flow of X . Hence, X is projectable onto %~ and X is projectable
onto X. The mapping X X' is an R-linear injection and, for every X, ¥ € X(N),

(X, 71=0xX,77. (1)

Hence, we have a faithful representation of £(N) into £(J"(M)).
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Definition 1. A function F € C%(J" (M)} (which may only be defined on an open subset)
is said to be a metric differential invariant of order r if, for every X € ¥(N), X'F=0.

Definition 2. A function F € C®(J7(M)) is said to be a metric invariant of order r if,
for every diffeomorphism f: N - N, FoJ'(f)=F.

Remark 3. Metric invariants are a subring of the ring of metric differential invariants. In
fact, the set of vector fields on N with compact support X; (N} is a dense ideal of X(N) with
respect to the C* topology and, hence, a function F € C®(J"(M)) is a metric differential
invariant if, and only if, for every X € X.(N), X F = 0. This is equivalent to saying that
for every ¢ € R, one has F o J'(¢),) = F, ¢, being the one-parameter group generated by
X with the last equation evidently holding for a metric invariant,

Example 4. Let ¥V be the Levi-Civitd connection of a pseudo-Riemannian metric g of
M, and R the curvature tensor. Since R is of type (1,3), for every r € N, V¥R is
a tensor field of type (1,2r -+ 3). Let us choose a sequence of r + 1 covariant indices
1 €ip<...<iy < 2r+3, and let us apply to them the isomorphism g! : T*(N) — T:(N),
thus obtaining a tensor field & (V¥ RYoir of type (r + 2,7 + 2). If we further choose a
permutation Ji, ..., jr.+z2 of its covariant indices, we can then obtain a scalar by simply
setting S, = ¢}, ---c;:f(l""(VI’R)’“""""), where cj- stands for the contraction of the ith
contravariant index with the jth covariant index. The value of S, at a point x € N
only depends on j¥*%(g), since the local coefficients I'}, (x) of ¥V only depend on j!(g),
and R, only depends on jf(g) (cf [7], IV.24 and II.7.6). Accordingly, we can define
a function F € C®(J¥*3(M)) by imposing that F(j2+2g) = S,(x), and that this
function is an invariant. In fact, if f : ¥ —- N is a diffeomorphism and we set
Z2=(f""g=Ffogo f!, then the Levi-CivitA connection of 3 is the linear connection
V given by VxY = f - (Vixf™! - ¥), as follows from Koszul's formula (7], IV.2.3),

and, consequently, for every r € N, the tensor fields V¥ R and Vzrﬁ are f-related (cf
[7], V1.1.2); i.e. for every system of vector fields Xy, ..., X241 € E(¥), and every point

x €N, LV RY(X )z, -+ (X2rg3de) = (vzrk)((f cX)pys o (F Xorg3)rio), oF else

(V¥RWXi, .-, Xoga) = 1 (T RNF - Xi,ev., f - Xao4s). Hence, S(2) = Sg(F (X)),
and this means F(j¥+2g) = F(J¥¥2(f)(j¥+2g)).

Definition 5.  An rth-order Lagrangian density is a horizoatal n-form €2, on J7(M). An
rth-order Lagrangian density is said to be invariant if, for every X € X(N), Ly Q, =0.

Remark 6. As 2, is horizontal, there exists locally a function £ e C®(J' M), such that
R, = Ldx A...A dx,. Below, we shall see that by introducing the factor ./(—=1}"" det(y;;)
indx; A...A dx, we obtain a globally defined invariant Lagrangian density, thus reducing
the problem of determining the invariant Lagrangian densities to that of the scalar invariants.
Note that in this case, £ should be substituted by F = £/./(—1)*" det(y;;).

Proposition 7. Assume N is oriented. Then, the bundle of metrics M is endowed with
a canonical invariant zero-order Lagrangian density w,, uniquely defined by the following
condition: if Xy,..., X, is an orthonormal basis for a metric g of M, defined on an
open subset U C M, which belongs to the orientation of N, then for every x € U,
(en)g, (X),....%X,) = 1. Accordingly, every Lagrangian density €, on J" (M) can be
uniquely written as Q, = Fa,, F & CO(J"(M)), and R, is invariant if, and only if, F is
a metric differential invariant.
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Proof. Since w, must be a horizontal n-form, it is clear that the condition in the statement
uniquely determines the desired form. Moreover, we can define a horizontal r-form on
M by setting for every ¥),..., Y, € T, (M), {(@n)g, (Y1, ... 1) = v (21, ..., 0T,
where v, is the Riemannian volume associated with g,. Since X, is p-projectable onto X;,
we have (@n)g, (X1, ..., Xz} = v, (X, ..., Xn), thus proving that w, satisfies the above
condition.

Abasis X\,..., X, for T;(N) is said to be orthonormal for the metric g; if: g(X;, X;) =
6,1 for either 1 < i <n+ or 1€ j<n™ g(Xi, X)) =—68; fornt +1 <4, j <n"'+n ;
in other words, the matrix of g, must be

I+ 0]
0 -I-/

Hence, locally we have w, = /(—1)* det(y;;)dx; A ... A dx,. Also note that w,
cannot be considered as the volume element associated with the canonical metric G =
2 icj Yijdx; ® dx; on M, since G is singular!

We shall now prove that w, is invariant. Given a diffeomorphism f of N, with
the above notations, we have: (?w)gx(Yl,..A,Y,,) = (wn)f(gt)(?*}’i,...,?*l’,,) =

uT(g,}(p*?*Yl vevrs PufoYs), and since p, o f. = fu © Pu, we obtain

(Fon)g, (Ns s B = (o5, ) (PaT1, oo, putn)
= ([ U1y, - - Pa¥i)
= N 0 (P, ey peYa)
=(wn)g,(Y1..,.,Yn). O

3. Local expression of the basic representation

Proposition 8. Let X = ¥, u;(8/8x;), u; € C®(U), 1 £ n, be the local expression
of a vector field X € X(N) on an open coordinate c[Omam (U Xt ..., xg) of N. The local
expression of the lifting of X to the bundle of pseudo-Riemannian metrics X € ¥(M) in
the induced coordinate system (p~' (U)); x;, vy 1€ign 1< j<k<n,is given by

Buh Bu;,
Zuz +Y v ”6 vj == 4 3}7)’&;—;5;;%&- )]

Xi i<

Proof. First, note that v;; is symmetric with respect to the indices £, j, so we shall also
write v;; = vy; for { > j. As is well known, the lift X is the unique vector field on M
which is p-projectable onto X and leaves the ‘canonical metric’ G = Z,S i Vi dx; @dx; on

the manifold M, invariant; ie. X = 3, u;(8/0x) + > g Vii(8/8yi)), for some functions
v € C®(p~'U), and L%G = 0. Hence,

L?'G = Z[U,‘j dx; ®de =+ yij du; ®dx_,- + ¥y dx, ® duj] =0
i<j

and this equation completely determines the unknown functions. O
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From the general formulae for the prolongation of vector fields by mﬁmtesnmal contact
transformations (e.g. see [8]), we then obtain the [ocal expression for X': more precisely,

BB, o gy,
Zu;'_ - ZZ Z I £ ( ) |: axﬂ+(;) ya—ﬁ + ax_ﬁ_'_(_r) y{rzl_ﬁ:l
&

i< lal=0
o 3By, } ]
+ ~—5 Va-pta [ 5 @
where (I) stands for the multi-index (i} = (0 ‘, ...,0). The above eguations

can be obtained by either imposing that: (i) X is p-projectable onto X; and (ii) X
leaves the generalized contact differential system C spanned by the one-forms on J7 (M),

8% = -3 ya_*.m dxg, i, j=1,. n,.lal < r, invariant; i.e. JT_.TC C C, or by simply
calculatmg the infinitesimal generator assomated with J"(¢,), ¢, being the local flow of X,

Example 9. For r = 1, the above formula reads as follows

Buk Buh 3
= Z 3 — Z Z ( ym) 3y,

isj

3211;, 32uh ou Uy hy du Up ih au,, ,J) o
- i + Yir T+
;;(Mﬁxkyw x0T B 0k T By 85" )y

@)

4. The fundamental distribution
Theorem 10. With the above hypotheses and notations, we have
(i) X}, only depends on jI*!(X).
(ii) There exists a unigue homomorphism of vector bundles over J"{AA1)

prITNTN) — TTM)

such that for every X € X(N), jlg € J'(M)

(i SN Xy =X,

(iit) On a dense open subset " C J"(AM), the image of O" defines an involutive
distribution ®" such that for every jig € O, X € X(N),

= (X

et X € N} C Typ (I M),

(iv) A function F € C°(&") is a metric differential invariant if, and only if, F is a first
integral of D",
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Proof. Evaluating X at the point Jig from formula (3), we obtain

o\ [3¥Hy, glPflg,. gisely,, g ﬂ'—ﬂlgih
%00 =~ 2 (§) |G 0 Gt + e 0]

kL p<a

318ly,  gle-BlH gij
+ 2 ( ) oxf ) e (’t)]

O<fga

thus proving (i). Accordmg]y, we can define a unique map $” by setting ®"(jlg, jiT'X) =
T,, Since the map X~ X is R-linear, it is clear that & is a homomorphism of vector
bundles as stated in (ii).

Let us define the subset O as follows. A point jx g belongs to O if, and only if, it has
a neighbourhood M;, such that the rank of fD[M, is constant. From the very definition,
@" is an open subset and the rank of ®fy, is locally constant. Next, we prove that O
is dense in J'{M). Let I be a non-empty open subset of J"(AM). Since the rank of
D" only takes a finite number of values, there exists a point jlg € I/ such that for every
jng €U, rka « £ tkD},,, and since the rank of a homomorphism of vector bundles is
a lower semicontmuous function, jZg € 0. In order to prove that ® is involutive, we
proceed as follows. Given a point jig € O, let X, ..., X; be vector fields on N such that
(X 1Yjyg -+ (K1), is a basis for Dj,. Then, there exists an open neighbourhood N,
such that f:, f; is a basis of @}:,g, for every j.g' € Nj,. Accordingly, any two

vector fields &, &' belonging to ’i)f',\,«’,x can be written as £ = ¥, f,-(Y:), £ = Zj ﬁ("f;),
and, from formula (1), we obtain

k
€. = > X (DX - [E X + FATEL X0 )
ij=1

thus showing that [£, £] also belongs to 3, and complete the proof of (iii). Part (iv)
follows directly from the definitions. O

Corollary I1. On a neighbourhood of each point jig € O, the number of functionally
independent metric differential invariants is dim J7 (M} —rk ¢;:g.

Progf. This follows from theorem 7 and the Frobenius theorem. d

Our next goal is to determine the rank of ®". In doing this we shall use normal
coordinates which will always be assumed to be metric (i.c. associated with an orthonormal
frame) and defined on a convex open neighbourhcod of a given point x € N ([7],
11 section 8, IV section 3). The expansion of the metric in a normal coordinate system
starts as follows (cf [9])

gy = gy(x) + 3 Z (Rugy (%) + Ry (x))xpxy + -+ (5)
k=1

where Rj;u are the components of the curvature tensor, i.e.

Rij = g(R(8/3x, 8/3x,)(3/3%;), 3/0x:).
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Taking derivatives in (5), we obtain

de:,
Bly=0  1<ijk<n ©
a).’k
and again taking derivatives
3%gi;
Bx;;al (x) = 3(Riklj(x) + R (x)). )

5. The rank of &!

Theorem 12. With the same notation as in proposition 8, ®!'(j2X) = X yg = 01f, and
only if, in a normal coordinate system X1,..., X, centred at x € N, the followmg conditions
hold true: for every i, j,k=1,.

2,

dx;dx,
Hence, @' : J2(TN) — T (J'M) is SUI’_]eCthC at each point jlg € J'(,M).

U (x) =0 gu(x) (x) + gu(x)“-i(x) = —(x)=0. (8)

Proof. From formula (4) we obtain
wi(x) =0 gu(x)—m + g,,(x) 4 o (0= 9)

2

(x)+gu(x) (x)

+3 (3“”( )ag’”( '+ g B+ B ) =0 a0
By applying (6), equation (10) becomes

azu,- 32&{;
gff(x)ax‘-axk (x)+g“(x)8x,3xk (x}=0. (i1)

£ (%) o,

By permuting (ik) — (Icz') in (11), we have
52

&ij (x} I (x) + g () o (x) = (12
Comparing (11) and (12), we obtain
32u;¢ azu;
= 8i . 13
ek (X) Txo%, (x) = gii(x) 5%, 0% (x) (13)
From (13) and (11), and again applying (13} after making the permutation (ijk) — (jik),
we obtain
a2u 3tu; 3261;,
Biek (¥ )a 5%, £ () = gulx) 3x3% (x) = —gj; (x) (x) —gre(x) 5x;3%, (x).
Accordingly,
82
Ly=0
dx,0x;

thus completing the proof of (8). Hence,
k&' =dim JATN) = in(n — 1) = in(n® + 20 + 3) = dim T, (J'M). 0
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6. The rank of $2

Lemma /3. 'With the same notation as in proposition 8 and theorem 12, ®*(ji X) = }2, . =

0 if, and only if, in addmon to equations (8), the following conditions hold true: for every
Lk I=1,

33u,-
W(ﬂ =0 (14)

duy
Z (axi () Ryji(x) + —(I)Rmm(x) + ——'(-x)thfj (x) + L:f (X} Riyjxs (x)) =0 (13)
h=1 '

Proof. It follows from formula (3) that fji,g = { if, and only if, equations (8) hold and,
furthermore, for every i, j,k,I=1,....n

..(x)._fjf-‘;”(x)+ ”(x)________83u,- (x) + A =0 (16)
bii Bx;dx,8x) &l 0x;8x,9x; wH =

where we have set

. % Bg,_, duy 33:..'
x.ﬂu—;( (g S0+ T ()

22k (x) g’“())

32
ooy "”*”(>+ —

dx;

Permuting the indices i, k in (16) and subtracting, we o¢btain

3., 3

%,
2ii () ——— (x) — g (x)

Uy
——(x) = Mg — Ay
9x;8x,8x ijax,-ax,( ) = digie = hiju

and permuting the indices j, k
33y 3

a u,-
3 00) e () = g5 (X) el (x) = At — Mt 17
giilx ) 5xo%, 3 {x) g”(x)ax,cax,ax,m kil kit (I7)

By adding (16) and {17), we obtain
3

U
2gu(x)W( X) = Agai = Rkt = Mjkt-

Formula (7) then yields

1

83y, = [ 8u, By,
gu(x)m(x) =3 h; [a?(x)(Rij(x) + Riny(x)) + Ez;(x)(Rim(x) + Ripi (x})

+ %(x)(ﬁ‘mﬂ(x) + Rijur(x)) + aﬂ(x)(Rk:‘hj(x) + kaj(x))] . (18)
Xy dx;

Since the left-hand side of (18) is symmetric with respect to the indices j, £, /, permuting
j and ! and equating the corresponding right-hand sides, we obtain {15), thus also showing
that the right-hand side of (18) vanishes and, hence, (i8) reduces to (E4). The preoof is thus
complete. a
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Remark 14. Equation (15} is invariant under the group of order 8 generated by the
permutations y : (ijkI) = (jkii) and 7 : (ijkI) — (ilkj). Note that y ot = T o ¥2.
Accordingly, in examining (15), we only need to consider the following three cases: (i)
i<jgkghi(digk<ejghand(i)i< gl <k

Theorem 135.

() M dimN =n = 1, for every jyg &€ J2(M), &%, is bijective,

(i) If dim N = n = 2, for every j2g € J>(M), 1k % =19,

(ili) For each n > 3, there exists a dense open subset O™ ¢ J2(M), such that for
every jig € O"%, &% is injective.

Proqf.

(i) From (8) and (14) it follows that ®? is injective. Hence, rk ‘Df-g =dim J}(TN) =
4 = dim ng(J N).

(i) Using the above remark, it is not difficult to check that equation (15) is identically
satisfied if n = 2. Accordingly, from (8) and (14), it follows that a 3-jet j}X € Ker 'iID2
completely determined by (dua2/dx1)(x). Hence, the kernel of &2 is a vector subbundie of
rank 1 and, therefore, rk ¢22 =dimJHTN)—1=20—-1=19.

(iii) Let r = ¥, L0 dx ® dx, be the Ricci tensor of g; f.e. r(X,Y) = trace of Z —
R(Z, X)(Y). Then we have r,;(x) = 3, gan{x)Ryjn (x). Since r is symmetric, there exists-
a unique endomorphism A : T;(N) — TN, such that for every X, Y € T,(N),

r{X, Y} =g(A(X), ¥) = g(X, A(Y)). (19)

Moreover, let B be the endoemorphism given by B = Z[‘j(au“faxv,)(x) dox; @ (8/0x:)s.
From the second equation of (8), we deduce that for every X, ¥ € T, (N),

g(B(X), ¥) + g(X, B(Y)) = 0. (20)

Let O™2 be the set of points jZg such that the eigenvalues of A in T,(N) ® C are pairwise
different. We shall prove that on "2, the unique solution of (15) is the trivial solution.
Let us denote by (X, Y) the bilinear form induced by g, on the complex vector space
T.(N)® T, so that (I19) and (20} imply

(A(Z), W) = (Z, A(W)) (B(Z), W)+ (Z,B(W))=0
for every Z, W € T,(N)® C. Letting ! = k in (15), multiplying by gi(x) and using the
second equation of (8), we obtain

L

r_}h('x) (x)‘*'rth(x)_'(x)
3x;

k=1
or equivalently,
{AB(Z), W)+ (Z,AB(W)) =0

for every Z, W € T,(N}® C. Let A(Z;) = 4;Z; be the eigenvalues (and the eigenvectors)
of A. From the above equations, we then obtain {AB(Z;), Z;) + (Z,, AB(Z;}} = 0 or
equivalently, {B(Z;), A(Z;)}+{A(Z;), B(Zj)} = 0;ie. L;{B(Z,), Z,) +2{Z;, B(Z;)) = O
Hence, (A; — 2;){Z;, B{Z,)) = 0. By virtue of the hypothesis this implies B(Z;} = 0, and
since Z,,..., Z, is a basis of the complex tangent space, we have B = Q. I
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7. The rank of &7, 7 = 3

Theorem /6. For each r 2 3, there exists a dense open subset O™ C J7 (M), such that
for every jig € O™, @}, is injective.

Proof. TFirst, we prove the theorem for r = 3. We distinguish two cases.

(i) dim N = n # 2. For the sake of simplicity, we write @2 = J2(AM). From (i) and
(111) in theorem 13, we know that ®? is injective on O™2. We set O™ = p"' (O™%). Assume
j2g € O™3. Since ¢'|o"= is injective from formula (3), we have that: j}(X) € Ker(b lf

and only if, j; 3(X) = 0 and, furthermore, for every i, j,k, I,m=1,...,n,

34 4

(x )g,u( x) + (X)gii(x) = (21)

dx; dxy Bx X 8x;8xy 3x Xy

Permuting { and k in (21) and subtracting, we have

4, 4

aty,
i) () — gy (W) (1) =0

0x; 0%, 010X 8x;0x;8x;8%p,
and permuting the indices j, &, and adding the equation thus obtained to (21}, we have

34

S el S fore LLkLm=1,...,
dx;8x,0x3xy (x) = Orevey b ” "

Hence, j#(X) = 0 and accordingly, ®7,,.; is injective.

(if) dim N = n = 2. From formula (3}, we conclude that j}(X) belongs to the kernel
of (Iﬂg, if and only if, in addition to equations (8) and (14), the following conditions hold
true: for every Jo| =3,i,j=1,2,

duy, & 3 = a7
Z(aixﬂ LA LT LY >+Z°fk _x&%ﬁ(”)

h=1

8%y

+ 81/ (X) 5y 0) + 8 R) 5 (1) = | @2)

ax rx+(1)

Recall that equation {15} is identically satisfied if # = 2. Moreover, the expansion given in
(5) vields {cf [9])

T, 1 1
Srnar. ) = 8 7m (R*mﬂ + Rugjm)(x) + -——(Rm;k + Riggm)(x)
iy
g 3%, (Rul_fk + R (x).

From the above equation and (22), we then obtain

(o=

4
(@=G,0,i=1,j=2) gzz(x) 7t (x)+gn(x) (X)
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iy oR
@=(3.0), i=j=2: EZ( x) ””(x)+2gn(x) (x)
@=@. 1), i=j=1): TR
et iEr= 'axfaxz(x)""
19 at
@=@ 1), i=1j=2 —3552-( >3R‘2‘2(x>+gu(> ZE
X1 axZax2
+322(JC) (x)_
1
19 R 9*u
@ =1 i =] =2~ 020 + 2800 S ) =
18 R
(@=(1,2), i=j=1) ”%x} ””(x)+2gn(x) 26 2(x)
4
(@=(1,2), i=1j=2): 822(x)—( )8R12‘2<x>+ 3“’3(x>
9x,0x;

34M2
— 2 =0
+ 211{x)gnlx) 5xtaxt (x)

4y
=(1,2), i=j=2) =0
@=L, 1 =) =2) 3250
duy 3R a4
(@=(0.3), i=)=1) —gu® s 27 () +25——=(x) =0
6 16x2
4 9%y

a%u
(=03} i=1 ;=2 822(x) (x) +gu(X)—(x) =

133

34
(@=1(0,3), i=j=2) (x)—

1t is not difficult to check that the above system is equivalent to saying that, for every
i, jL,k,ibm=1,2,

84u5
TR ey =0
axjaxkax;ém (X)
and
PoHEw=0  Zo2wm=o

Hence, in the dense open subset 0?3 of the 2-jets of metrics of a surface whose curvature
satisfies || (VR){(x) |> 0, we have jf(X) = 0 and, therefore, @f’oz,ﬁ is injective.
By induction on r, we now prove the general statement of the theorem. For every
>3, n 2 L weset O = p=(O"3). Assume jit'(X) € Ker R , with jlg € O™,
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Since X, 1y PrOjects onto X -1 g it follows from the induction hypothesis that j;(X) = 0
and, from formula (3), we thus deduce

r+ly 4+,
Ax Jxe+i (X)g”(x) + ax u+(1)( Jgi(x) =0
forevery i, j = 1,...,n, [&| == r. Let k be an index such that oty > 0. We set § = o — (k),

so that the above equation reads as foliows

41 r+ly,

é-—m(x)'*'gu(x}a—g—a“g(x) = (23)

giilx)

Permuting the indices i, k, in (23), and subtracting, we have

3r+lui 3’+1uk
5(8) e (1) — () 7 () = 0
810055 g )~ ) ()

and permuting the indices J, & and adding the above equation to (23), we obtain

ar+1
5‘"‘""’"—7( x) =
X;0xp0x

thus proving that jZ*!(X) =0 and completing the proof of the theorem. |

3. Calculating <, »

Theorem I7. On a dense open subset of J'(AM), the number i,, of functionally
independent metric differential invariants is as follows.

(iyForeveryn 2 1, ipog =iy =0

(i) For every r 2 0, {3, = 0.

(iii) f22 = 1 and, forevery r 2 3, is, = %(r + D{r — 2).

(iv) Forevery n 2 3, r 2 2,

iy =n+

r=Dn* =@ +Dnfn+r
20r + 1) ( r )

Proof. First, we confine ourselves to the dense open subset & prescribed in theorem
10-(111), where we know that the metric differential invartants of order r coincide with the
ring of first integrals of the fundamental distribution.

(1) It follows from formula (2) that the vector fields 7(:,93 span Tjs,(M); hence, iy g = 0.
Since @' is surjective (theorem 12) from corollary 11, we conclude that i, | = 0.

(ii) From theorem 16, we know that @ is injective (in fact O = J"(M) in this
case). From coroilary 11, we thus have {;, = dimJ (M)} — 1k ¢;:§ = dim J" (M) —
dmJFH TN =@+~ +2) =

{iii) 732 = 1 follows directly from part (ii) of theorem 15. Moreover, the formula for
r 2 3 is a particular case of the formula in (iv).
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(iv) From theorem 15(iii), theorem 16 and corollary 11, we have

in, =dim J"(M) — dim J[TH(TN)

_( an-+1) n+r) n+r-§-1)
L (r)""(ru:-l

(r — Dn? — (r + 1)n(n+r
2ir+ b r )

a

Remark 18. For n 2z 3, there is a classical procedure in order to obtain second-order
metric invariants, the so-called curvature invariants (6], p 146). In the generic case, there
is an essentially unique frame reducing g and its Ricci tensor to a canonical form. The
invariants are the components of the Weyl tensor on that frame plus the n eigenvalues of
the Ricci tensor. Let us calculate the dimension of the space of Weyl tensors. Following
the same notation as [10], 1.105-116, we have that the space CE of curvature tensors
(here, E = T}(N)), breaks into three irreducible subspaces under the natural action of the
orthogonal group CE = UE & ZE @ WE, where dimUE = 1, dimZE = =& g
(traceless symmetric 2-tensors) and WE are the Weyl tensors, Hence,

1
dimWE:dimc.E—f("zL)
2 4
—dim§* A\ E —di _rn+D
=dim § /\E dlm/\E >

nt — Tn? —6n
2

Hence, the number of curvature invariants is

nt —Tn® —6n _ n* —7n? 4+ 6n
2 - 2

Accordingly, this shows that the number of functionally independent curvature invariants is
gxactly the number of functionally independent second-order metric invariants.

n =1ig3-
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