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CSICIEC. U S e m o  144, 28006-Madrid, Spain 

$ UNED. Departamento de Matemhticas Fundamentales, USenda del Rey stn, ZSW-Madrid, 
spain 

Received 11 July 1994 

Abstract. The number of functionally independent scalar invariants of arbitrary order of a 
generic pseudo-Riemannian metric on an n-dimensional manifold is determined. 

1. Introduction 

The goal of this work is to determine the number i",, of functionally independent differential 
invariants of order r of a generic pseudo-Riemannian metric g on an n-dimensional manifold 
N .  The results are: for every n > 1, ; n , ~  = in,] = 0; for every r > 0, ;I., = 0; i2.2 = 1; 
and for every r > 3, iz,, = $(r + l)(r  - 2);  and finally, 

(r - l)n2 - ( r  + I)n 
for every n 2 3, r > 2. 

Z(r + 1) 
in,r = n + 

The theory of metric invariants is classic in both general relativity (GR) and Riemannian 
geometry. The standard approach to this topic relies on the definition of an invariant as 
a polynomial in the g,j's, their partial derivatives up to a certain order, say al'lgij/axa, 
Io(/ < r and on [det(gij)]-', which is 'natural' under diffeomorphisms (for example, see 
[I]). For scalar invariants, the above definition does not allow one to pose the question 
of how many functionally independent invariants there are for each order since some of 
the functional relationships among invariants may be outside the ring prescribed by the 
above definition and furthermore, standard analysis tools (such as involutiveness, Frobenius 
theorem, etc) cannot be applied since the ring is not complete. From this point of view, 
the enumeration of the scalars constructed from the Riemann tensor of the Levi-Civitl 
connection of a pseudo-Riemannian metric by means of covariant differentiation, tensor 
products and contractions has been discussed in some recent papers: in [ Z ] ,  the number of 
independent homogeneous scalar monomials of each order and degree up to order 12  in 
the derivatives of the metric is determined and in [3], the same number is determined up 
to order 14. Apart from the interest and complexity of these results, especially in relation 
to the so-called Weyl invariants (cf [ 4 ] )  for field theory, it is clear that the determination 
of the number in,, is the most relevant fact since it provides the number of essentially 
different Diff(N)-invariant Lagrangians of arbitrary order that exist in OR. It, thus, seems 
natural to base the theory on the jet-bundle notion of an invariant (cf [ 5 ] )  which avoids the 
aforementioned difficulties of the polynomial notion and translates the naturality condition 
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into an authentic condition of invariance under the action of the group of diffeomorphisms 
of N on an appropriate jet bundle. 

The plan of this paper is as follows. In section 2, we introduce the notion of a metric 
invariant as well as that of an invariant Lagrangian density, although, for an oriented ground 
manifold N ,  the latter is reduced to the former since the bundle of metrics over N is 
endowed with a canonical invariant zero-order Lagrangian density, so that the emphasis is 
put on scalar invariants. The notion of invariance is related to a specific representation of 
the vector fields of N into vector fields of the r-jet bundle of metrics. Section 3 contains the 
explicit determination of this representation and its formulae are used throughout the paper. 
In section 4, we prove that, on a dense open subset of the r-jet bundle, the metric invariants 
coincide with the ring of first integrals of an involutive distribution which is obtained by 
linearizing the basic representation by means of a homomorphism of vector bundles W. 
The number of invariants in,,, is, thus, equivalent to knowing the rank of W. Sections 5, 
6 and 7 are devoted to this aim of distinguishing the different cases that appear according 
to the values of order r of the jet bundle that we are considering and the dimension n of 
the ground manifold. Finally, section 8 contains the calculation of in,, and the comparison 
of in,* with the standard procedure (cf [6]) in order to generate the second-order metric 
invariants. 

J MUEOZ Masque and  A Valdes Morales 

2. The notion of a metric invariant 

Let N be  an n-dimensional differentiable manifold. Given an integer 0 < n+ < n, we 
shall denote by p : M = M.+(N) + N the bundle of pseudo-Riemannian metrics on N 
of signature (n+ ,  n-), n- = n - n+ (i.e. the global sections of p are exactly the pseudo- 
Riemannian metrics on N of signature ( n + , n - )  at each point). Let pr : J ' (M)  + N 
be the r-jet bundle of local sections of p.  The r-jet at a point x E N of a metric g 
of M will be denoted by j;(g). For every r 2 s, we also have a natural projection 
P , , ~  : J ' ( M )  + JS(M),  pr.v(j:g) = j i g .  Let (U; X I , .  . . , xn)  be an open coordinate 
domain of N and let 01 = (al, . . . , 01.) be a multi-index of non-negative integers. We 
set 1011 = Ciai. The family of functions (xi o p,,yi')),  j < k ,  1011 < r ,  defined by 
y i x ( j : g )  = (al"lgjr/axm)(x). where g,, = g(a/axj, a/ax,), constitutes a coordinate chart 
on pr-lU = J ' ( p - ] U ) .  We shall simply write yjx instead of y,'". Note that the functions 
(xi o p ,  y j t ) .  1 < i < n, 1 < j < k < n are a coordinate system on p- ' (U) .  We shall also 
set y i k  = y: for j > k.  

Let f :  N -+ N' be a diffeomorphism. We shall denote by 7: M + Mi, M' = 
M , + ( N ' )  the natural lift of f to the bundles of pseudo-Riemannian metrics; i.e. T(gz) = 
(f-')*g,. Hence, p' o 7 = f o p .  

The diffeomorphism 3 M --f M' has a natural extension to jet bundles 
J'(f): J'(M) + J ' ( M ' ) ,  defined as follows: J'(f) ( j i g )  = j j tx)(70 g o f-]). 

Given a vector field X E X ( N ) ,  we shall denote by xr the natural lift of X to J ' ( M ) .  
For r = 0, we shall simply write ST instead of X . Note that 57 is the natural lift to the 
bundle M of pseudo-Riemannian metrics of the vector field X. If p, is the local flow of X, 
then J ' (9 , )  is the local flow of 3. Hence, and 57 is projectable 
onto X. The mapping X H yr is an W-linear injection and, for every X ,  Y E X ( N ) .  

(1) 

-a 

-,-I is projectable onto X 

-I -I - [X , Y 1 = [X, Yf. 

Hence, we have a faithful representation of X(N) into X(J'(M)).  
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Definition 1. A function F E Cm(J‘(M)) (which may only be defined on an open subset) 
is said to be a merric diferential invariant of order r if, for every X E X ( N ) ,  SI‘F = 0. 

Definition 2. 
for every diffeomorphism f : N --f N ,  F o J ‘ ( f )  = F .  

Remark 3. Metric invariants are a subring of the ring of metric differential invariants. In 
fact, the set of vector fields on N with compact support X,(N)  is a dense ideal of X(N) with 
respect to the Cm topology and, hence, a function F E Cm(J‘(M)) is a metric differential 
invariant if, and only if, for every X E X,(N) ,  Z’F = 0. This is equivalent to saying that 
for every I E W, one has F o J‘($!) = F ,  4, being the oneparameter group generated by 
X with the last equation evidently holding for a metric invariant. 

Example 4. Let V be the Levi-CivitB connection of a pseudo-Riemannian metric g of 
M ,  and R the curvature tensor. Since R is of type (1,3), for every r E PI, V*R is 
a tensor field of type (1 ,2r  + 3). Let us choose a sequence of r + 1 covariant indices 
1 6 io < . . . e i, < >+3, and let us apply to them the isomorphism gu : T:(N) -+ Tx(N) ,  
thus obtaining a tensor field ~’(VbR)’O*-~’~ of type (r + 2,r + 2). If we further choose a 
permutation j l ,  . . . , j,+, of its covariant indices, we can then obtain a scalar by simply 
setting S, = c! JI ’ .  . C ~ + ~ ( ~ ’ ( V ~ R ) ’ O ~ ~ . . ~ ~ , ) ,  J r t 2  where cj stands for the contraction of the ith 
contravariant index with the j t h  covariant index. The value of S, at a point x E N 
only depends on j?+’(g), since the local coefficients rj,(x) of V only depend on ji(g), 
and R, only depends on j :(g) (cf [7], IV.2.4 and III.7.6). Accordingly, we can define 
a function F E C“(J*+’(M)) by imposing that F(j?+’g) = S,(x), and that this 
function is an invariant. In fact, if f : N --f N is a diffeomorphism and we set 
g = (f-’)’g = 7 o g o f-’, then the Levi-CivitA connection of 2 is the linear connection 
V given by ~ x Y  = f . (V,m.xf-’ . Y), as follows from Koszul’s formula ([7]. IV.2.3), 
and, consequently, for every r E PI, the tensor fields VZIR and V R are f-related (cf 
[7], VL1.2); i.e. for every system of vector fields X t ,  . . . , Xzr+l E X(N), and every point 
x c N ,  f d v ? - R ) ( ( X ~ ) , .  . . . . ( X Z I + ~ M  = (V R ) ( ( f ’   XI)^(+. . . , (f’ XZr+3)f(x)), or else 
( V 2 r R ) ( X ~ ,  . . . I XZ,+S) = f-’ (V R ) ( f  X I , .  . . , f . Xt-+3). Hence, S&) = S g ( f ( x ) ) ,  
and this means F(j,2’+2g) = F(J”+Z(f)(j?+2g)). 

Definition 5. 
rth-order Lagrangian density is said to be invariant if, for every X E X ( N ) ,  Lg’R2, = 0. 

Remark 6. As Rn is horizontal, there exists locally a function C E Cm(J‘M), such that 
0. = Ldxl  A . .  . A  dx,. Below, we shall see that by introducing the factor ,/(-I)”- det(yjj) 
in drl A . .  . A  dx, we obtain a globally defined invariant Lagrangian density, thus reducing 
the problem of determining the invariant Lagrangian densities to that of the scalar invariants. 
Note that in this case, L should be substituted by F = L/,/(-l)n- det(yij). 

Proposition 7. Assume N is oriented. Then, the bundle of mehics M is endowed with 
a canonical invariant zero-order Lagrangian density CO,, uniquely defined by the following 
condition: if X I ,  ,X,, is an orthonormal basis for a metric g of M ,  defined on an 
open subset U c M ,  which belongs to the orientation of N ,  then for every x E U, 
( c o , J ~ , ( ~ I ,  . . . , X , )  = 1. Accordingly, every Lagrangian density R, on J’(M) can be 
uniquely written as R,, = Fa,, F E Cm(J‘(M)), and 0, is invariant if, and only if, F is 
a metric differential invariant. 

A function F E Cm(J‘(M)) is said to be a metric invariant of order r if, 

- 
-21 - 

-2 - 
-7.1 - 

An rth-order Lagrangian density is a horizontal n-form Q, on J‘(M). An 

- 
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Proof. Since w, must be a horizontal n-form, it is clear that the condition in the statement 
uniquely determines the desired form. Moreover, we can define a horizontal n-form on 
M by setting for every YI, . . . , Y, E T , ( M ) ,  ( ~ & , ( Y I , .  . . . YJ = V,~(P,YI, . . . , p,Y,J, 
where us. is the Riemannian volume associated with g,. Since xi is p-projectable onto X i ,  
we have ( w . ) , ( ~ t ,  . . . , X, )  = U ~ , ( X I , .  . . , X, ) ,  thus proving that w, satisfies the above 
condition. 

A basis X I ,  . . . , X, for T,(N) is said to be orthonormal for the metric g, iE g ( X i ,  X j )  = 
6jj for either 1 < i < nf or 1 < j < nt; g ( X i ,  X j )  = -6ij for n+ + I < i, j < n+ + n-; 
in other words, the matrix of g, must be 

J Mufioz Masque andA Valdks Morales 

- 

Hence, locally we have w. = J(-l)"-det(yij)dxl A .. . A dx.. Also note that w. 
cannot be considered as the volume element associated with the canonical metric G = 

yjj dx, C4 dxj on M ,  since G is singular! 
We shall now prove that w, is invariant. Given a diffeomorphism f of N ,  with 

the above notations, we have: ( ~ U ) ~ ' ( Y I  ,...+ Y.) = (W,JT(~, , (T.YI,  ..., f*YJ = 
q s , , ( p . T J l , .  . . , p * f * Y n ) ,  and since p, of, = f. o p., we obtain 

- 

3. Local expression of the basic representation 

Proposition 8. Let X = xi ui(a/axi), u i  E Cm(U),  1 < i < n,  be the local expression 
of a vector field X E X ( N )  on an open coordinate domain ( U ;  X I ,  . . . , x.) of N. The local 
expression of the lifting of X to the bundle of pseudo-Riemannian metrics E X(M) in 
the induced coordinate system (p-'(U); xi. yjw), 1 < i < n, I < j < k < n, is given by 

Proof. First, note that uij is symmetric with respect to the indices i. j ,  so we shall also 
write ujj = uji for i > j .  As is well known, the lift is the unique vector field on M 
which is p-projectable onto X and leaves the 'canonical metric' G = yij dxi C4 dxj on 
the manifold M ,  invariant; i.e. X = xi ui(a/axi) + xiGj uij(a/ayij), for some functions 
ujj E Cm(p-l U ) ,  and LxG = 0. Hence, 

- 

L y G = C [ u i j d x j @ d x j  +y i jdu i@dxj  + y i j d x j @ d u j ] = O  
i <I 

and this equation completely determines the unknown functions. 
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From the general formulae for the prolongation of vector fields by infinitesimal contact 
transformations (e.g. see [8]), we then obtain the IocaI expression for i?'; more precisely, 

where ( i )  stands for the multi-index (i) = (0,. , . , 1, . . . , O ) .  The above equations 
can be obtained by either imposing that: (i) w is p,-projectable onto X; and (ii) i?' 
leaves the generalized contact differential system C spanned by the one-forms on J'(M), 
0;' = dy, - xK yatcK, dxk, i ,  j = 1. .  . . , n, la1 c r ,  invariant; i.e. LrC C C, or by simply 
calculating the infinitesimal generator associated with J'(Cr), Ct being the local flow of X. 

Example 9. 

ij i j  

For r = 1, the above formula reads as follows 

4. The fundamental distribution 

Theorem 10. With the above hypotheses and notations, we have 
(i) Ti;E only depends on j ; + ' ( X ) .  
(ii) There exists a unique homomorphism of vector bundles over J ' (M)  

@' : p:J'+'(TN) -+ T ( J ' M )  

such that for every X E X ( N ) ,  j:g E J'(M) 

(iii) On a dense open subset U' c J ' ( M ) ,  the image of 0' defines an involutive 
distribution 9' such that for every j:g E Or, X E E ( N ) ,  

= {f71,,; X E X ( N ) ]  C q;8(JrM).  

(iv) A function F E Co3(U') is a metric differential invariant if, and only if, F is a first 
integral of D'. 
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Proof. 

J Mutioz Masque and A Valdes Morales 

Evaluating 57' at the point j:g from formula (3), we obtain 

thus proving (i). Accordingly, we can define a unique map 0' by setting W ( j ; g ,  j : + I X )  = 
X j ; g .  Since the map X H 57' is R-linear, it is clear that 0' is a homomorphism of vector 
bundles as stated in (ii). 

Let us define the subset U' as follows. A point j:g belongs to U' if, and only if, it has 
a neighbourhood Nj;g such that the rank of Oh;" is constant. From the very definition, 
U' is an open subset and the rank of @lo, is locally constant. Next, we prove that U' 
is dense in J ' (M).  Let U be a non-empty open subset of J'(M). Since the rank of 
9' only takes a finite number of values, there exists a point j ; g  E U such that for every 
j;,g' E U ,  rk9;;?, < rkB;;$, and since the rank of a homomorphism of vector bundles is 
a lower semicontinuous function, j i g  E U'. In order to prove that Br is involutive, we 
proceed as follows. Given a point j i g  E U', let X I ,  . . . , x k  be vector fields on N such that 
 XI);;^. . . . , &)!, is a basis for Bj;g. Then, there exists an open neighbourhood N,, 
such that XI;;;, . . . , X k  is a basis of a;;,*, for every j;,g' E JV&. Accordingly, any two 
vector fields 6 ,  6' belonging to B;4;r can be written as 5 = xi fi(x), e' = cj c(T;), 
and, from formula (I), we obtain 

- 

- 

thus showing that [ E ,  6'1 also belongs to 9', and complete the proof of (iii). Part (iv) 
follows directly from the definitions. 0 

On a neighbourhood of each point j i g  E U'. the number of functionally Corollary I I .  
independent metric differential invariants is dim J ' (M) - rk CDJ;~. 

Proof. This follows from theorem 7 and the Frobenius theorem. 0 

Our next goal is to determine the rank of W. In doing this we shall use normal 
coordinates which will always be assumed to be metric (i.e. associated with an orthonormal 
frame) and defined on a convex open neighbourhood of a given point x E N ([7], 
In section 8, IV section 3). The expansion of the metric in a normal coordinate system 
starb as follows (cf [9]) 

n 

gij  = gij(x) + E ( R i i ~ j ( x )  + R j r ~ i ( x ) ) x ~  + ' ' (5 ) 
k , I = l  

where Rijkl are the components of the curvature tensor, i.e. 

R..  l,kl - - g(R(a/axk,  a/axi)(a/axj) ,  a/axi) .  
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Taking derivatives in (3, we obtain 
agij - (x )=O l < i , j , k < n  
axh 

and again taking derivatives 

5. The rank of iP' 

Theorem 12. With the same notation as in  proposition 8 ,  @ ( j : X )  = Ti;, = 0 if, and 
only if, in a normal coordinate system X I ,  . . . , x, centred at x E N ,  the following conditions 
hold true: for every i ,  j ,  k = I . .  , . , n 

aui  auj  aZui 
axj ax, axjaxk 

u , ( x )  = 0 gij(x)-(x) + S j j ( X ) - - ( X )  = 0 - ( x )  = 0. (8) 

From (13) and ( l l ) ,  and again applying (13) after making the permutation ( i j k )  H ( j i k ) ,  
we obtain 

Accordingly, 

3!qX) = 0 
ax, axj 

thus completing the proof of (8). Hence, 
r k 0 '  =dim J:(TN) - in ( .  - 1) = + 2n + 3) = dim7&(J'M) 
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6. The rank of QZ 

Lemma 13. With the same notation as in proposition 8 and theorem 12, 'P*(j;X) = X ., = 
0 if, and only if, i n  addition to equations (8), the following conditions hold true: for every 
i , j , k , l = l ,  ..., n 

J Mutioz Masque and A Valdks Morales 

-2 
I. 8 

asui 
ax j  axkaxl  ( x )  = 0 

Proof. It follows from formula (3) that F:;8 = 0 if, and only if, equations (8) hold and, 
furthermore, for every i, j ,  k ,  1 = 1. . . . , n 

where we have set 

Permuting the indices i, k in  (16) and subtracting, we obtain 

and permuting the indices j ,  k 

By adding (16) and (17), we obtain 

a3ui 
( x )  = hjkil - hikjl - hi jk l .  2gi i (x)  ax,axkaxl 

Formula (7) then yields 

1 a u h  a u h  + -(x)(Rihj!(x) + RijhI(x)) - ( X ) ( R k i h j ( X )  + RKhi;(x)) . (18) 
ax, axl 

Since the left-hand side of (18) is symmetric with respect to the indices j ,  k , l ,  permuting 
j and 1 and equating the corresponding right-hand sides, we obtain ( 1 3 ,  thus also showing 
that the right-hand side of (18) vanishes and, hence, (18) reduces to (14). The proof is thus 
complete. 0 
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Remark 14. Equation (15) is invariant under the group of order 8 generated by the 
permutations y : ( i j k l )  H ( j k l i )  and r : ( i j k l )  H ( i l k j ) .  Note that y o r = r o y 2 ,  
Accordingly, in examining (15), we only need to consider the following three cases: (i) 
i < j < k < 1 ;  (ii) i < k < j < I ;  and (iii) i < j < 1 < k .  

Theorem 15. 
(i) If dim N = n = 1. for every j:g E J Z ( M ) ,  
(ii) If dim N = II = 2, for every j j g  E J'(M), rk Qp?, = 19. 

(iii) For each n 2 3, there exists a dense open subset U",2 c J z ( M ) ,  such that for 

is bijective. 

J .  8 

every j:g E U".*, @& is injective. 

Proof: 
(i) From (8) and (14) it  follows that @' is injective. Hence, rk @j:8 = dim JZ(TA7) = 

4 = dim T j : r ( J Z N ) .  
(ii) Using the above remark, it is not difficult to check that equation (15) is identically 

satisfied if n = 2. Accordingly, from (8) and (14), i t  follows that a 3-jet j , )X  E KerQjj8 is 
completely determined by (auz/axl)(x). Hence, the kernel of Q2 is a vector subbundle of 
rank 1 and, therefore, rk@;:g = dimJ:(TN) - 1 = 20 - 1 = 19. 

rtJ dri @ dx, be the Ricci tensor of g; i.e. r ( X ,  Y )  = trace of Z H 

R ( Z ,  X ) ( Y ) .  Then we have r , j ( x )  = Eh ghh(X)Rhjhj(x). Since r is symmetric, there exists 
a unique endomorphism A : T , ( N )  + T I N ,  such that for every X ,  Y E T , (N) ,  

(19) 

(iii) Let r = 

r ( X ,  Y )  = g ( A ( X ) ,  Y )  = g ( X ,  A ( Y ) ) .  

Moreover, let B be the endomorphism given by B = E,,,(au:,/axJ)(x)drxj 8 (a/axi),. 
From the second equation of (8), we deduce that for every X ,  Y E T , ( N ) ,  

g ( B ( X ) ,  Y )  + g ( X .  BO')) = 0. (20) 

Let be the set of points j:g such that the eigenvalues of A in T , ( N )  t3 C are pairwise 
different. We shall prove that on U".*, the unique solution of (15) is the trivial solution. 
Let us denote by ( X ,  Y )  the bilinear form induced by g, on the complex vector space 
T , ( N )  @C, so that (19) and (20) imply 

( A ( Z ) ,  W )  = (Z, A ( W )  ( W Z ) ,  W )  + (Z, B ( W )  = 0 

for every Z ,  U' E T , (N)  t3 @. Letting 1 = k i n  (15), multiplying by g&) and using the 
second equation of (8), we obtain 

or equivalently, 

( A B ( Z ) ,  W )  + (2, A B ( W ) )  = 0 

for every 2, $1' E T , ( N )  a@. Let A ( Z ; )  = hiZi be the eigenvalues(and the eigenvectors) 
of A .  From the above equations, we then obtain ( A B ( Z j ) ,  Z j )  + ( Z t ,  A B ( Z j ) )  = 0 or 
equivalently, ( B ( Z j ) ,  A ( Z j ) ) + ( A ( Z i ) ,  B ( Z j ) )  = 0; i.e. A,(B(Z8) ,  Z,)+h;(Zj, B ( Z j ) )  =O.  
Hence, (hi - A j ) ( Z i ,  B ( Z , ) )  = 0. By virtue of the hypothesis this implies B ( Z j )  = 0, and 

0 since ZI, . , . , Z ,  is a basis of the complex tangent space, we have B = 0. 
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7. The rank  of P, T 

Theorem 16. For each r > 3, there exists a dense open subset 0"" c J ' (M) ,  such that 
for every j Jg  E U"", Ojlg is injective. 

Proof. First, we prove the theorem for r = 3. We distinguish two cases. 
(i) dim N = n # 2. For the sake of simplicity. we write U'.' = Jz (M) .  From (i) and 

(iii) in theorem 15, we know that 0' is injective on U".'. We set = p;' Assume 
j:g E U".3. Since 0& is injective from formula (3). we have that: j;(X) E Ker Q$ip if, 
and only if, j t ( X )  = 0 and, furthermore, for every i,  j? k .  1 ,  m = I ,  , . , , n, 

J MuEoz Masque and A Valdks Morales 

3 

Permuting i and k in (21) and subtracting, we have 

and permuting the indices j ,  k ,  and adding the equation thus obtained to (21). we have 

a4ui 
axjaxkax,ax, 

( x ) = O  f o r e v e r y i , j , k , l , m = l ,  ..., n. 

Hence, j;(X) = 0 and accordingly, Q70,3 is injective. 
(ii) dim N = n = 2. From formula (3), we conclude that j;(X) belongs to the kernel 

of 4;21b, if and only if, in addition to equations (8) and (14), the following conditions hold 
true: for every I E I  = 3, i, j = I ,  2, 

Recall that equation (15) is identically satisfied if n = 2. Moreover, the expansion given in 
( 5 )  yields (cf [9]) 

From the above equation and (22), we then obtain 

(E = (3,0), i = j = I): -(x) = 0 
a%,  
ax; 
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a%, 
( x )  = 0 (a = (3,0), i = j = 2): -(x)- (1) + 2g22(x)- 

ax, ax, ax;ax, 
au2 a~~~~~ 

a%, 
(a = (2. 1). i = j = 1): - ( x )  = 0 

aX:ax2 

1 au2 a ~ , , , ~  a4ul 
(a = (2, I ) ,  i = 1. j = 2): ----(x)- 3 ax, ax, (x)+g11(x)ax:ax,z ( x  ) 

a4u2 
+ g22(x)+ ( x )  = 0 

a4u2 
(x) = 0 ((U = (2, l),  i = j = 2): ----(x)- (x) + &?,,(x)- 

3ax, axl axfax; 
1 ax2 a~],,, 

(a = ( I ,Z ) ,  i = j = 1): ---(x)- (XI + 2gll(x)--T--i(x) = 0 

(a = ( l ,Z ) ,  i = 1, j = 2): -gzz(x)-(x)- (2) + - - - + I )  

a4u2 

I au2 a~~~~~ a4u, 
3 ax, ax, ax, ax, 

1 auz a~~~~~ ahul 

3 ax, ax, axlax, 

+gll(X)g22(X)ax:ax:(X) = o  

It is not difficult to check that the above system is equivalent to saying that, for every 
i ,  j ,  k ,  I ,  m = 1,2, 

and 

( x )  = 0. ( x )  = o  -(x)- 
au2 a~~~~~ 
-@)- ax, ax, 

au2 a~~~~~ 
ax, ax, 

Hence, in the dense open subset of the %jets of metrics of a surface whose curvature 
satisfies 11 ( V R ) ( x )  I[> 0, we have j : ( X )  = 0 and, therefore, is injective. 

By induction on r ,  we now prove the general statement of the theorem. For every 
r 2 3, n 2 1. we set On,' = P ~ ~ ' ( O " , ~ ) .  Assume j ;+ ' (X)  E Ker@JiP;:,, with j i g  E On.'. 



7854 

Since xJ;R projects onto Xj;-lP. i t  follows from the induction hypothesis that j : (X)  = 0 
and, from formula (3), we thus deduce 

J Muiioz Masquk and A Valdks Morales 

-r-I 

for every i, j = I ,  , , , , n ,  Iff[ = r .  Let k be an index such that cuk > 0. We set ,9 = (Y - (k), 
so that the above equation reads as follows 

Permuting the indices i, k, in (23). and subtracting, we have 

and permuting the indices j, k and adding the above equation to (23), we obtain 

thus proving that j : + ' ( X )  = 0 and completing the proof of the theorem. 0 

8. Calculating zn,, 

Theorem 17. On a dense open subset of J ' (M) ,  the number in,r of functionally 
independent metric differential invariants is as follows. 

(i) For every n 2 1, in,o = Ln.l  = 0. 
(ii) For every r > 0, i l , r  = 0. 
(iii) i2.2 = 1 and, for every r 2 3, iz., = i ( r  + l)(r - 2). 
(iv) For every n 3, r > 2, 

( r  - l)n2 - (r + 1)n n + r 
2(r + 1) ( r >. in,, = n + 

Proof. First, we confine ourselves to the dense open subset U' prescribed in theorem 
IO+), where we know that the metric differential invariants of order r coincide with the 
ring of first integrals of the fundamental distribution. 

(i) It follows from formula (2) that the vector fields zpp span Tj:'$(M); hence, in,o = 0. 
Since Q' is surjective (theorem 12) from corollary 11, we conclude that in.l = 0. 

(ii) From theorem 16, we know that Q' is injective (in fact U'.' = J ' (M)  in this 
case). From corollary 11, we thus have il,, = dim J ' (M)  - rkQjLg = dim J ' (M) - 
dim J [ + ' ( T N )  = (r + 2) - (r + 2) = 0. 

(iii) i2.2 = 1 follows directly from part (ii) of theorem 15. Moreover, the formula For 
r 2 3 is a particular case of the formula in (iv). 
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(iv) From theorem 15(iii), theorem 16 and corollary 11, we have 

in,, = dim Y ( M )  - dim J i + ' ( T N )  

= ( n + T  n ( n +  I )  ( " t r ) )  - .(" 
1) 

(r - l ) n 2  - ( r  + l )n  n + r 

0 

Remark 18. For n 2 3, there is a classical procedure in order to obtain second-order 
metric invariants, the so-called curvature invariants ( [6] ,  p 146). In the generic case, there 
is an essentially unique frame reducing g and its Ricci tensor to a canonicaI form. The 
invariants are the components of the Weyl tensor on that frame plus the n eigenvalues of 
the Ricci tensor. Let us calculate the dimension of the space of WeyI tensors. Following 
the same notation as [lo], 1.105-116, we have that the space CE of curvature tensors 
(here, E = T,X(N)), breaks into three irreducible subspaces under the natural action of the 
orthogonal group CE = U E  @ ZE @ W E ,  where d imUE = 1, d i m 2 E  = 9 - 1 
(traceless symmetric 2-tensors) and WE are the Weyl tensors. Hence, 

= n +  2 ( r + 1 )  ( r ), 

nOr + 1) 
2 

d i m W E = d i m C E - -  

2 4 n(n + 1) = d ims2 / \  E -d im/ \  E - - 
2 

n4 - 7n2 - 6n 
2 

- - 

Hence, the number of curvature invariants is 

n 4 - 7 n 2 - 6 n  - n4-7nZ+6n - , 
- 1.,2. - 

n +  2 2 
Accordingly, this shows that the number of functionally independent curvature invariants is 
exactly the number of functionally independent second-order metric invariants. 
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